ol and (2S,3R)-exo-3-propylsulfonyl-1,3,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol (Declercq, Feneau-Dupont, Huart & Nemery, 1991, and references cited therein) are closely related to the title compound.

References

DECLERCQ, J.-P., FENEAU-DUPONT, J., HUART, C. & NEMERY, I. (1991). Acta Cryst. C47, 2234–2236.

- DE LOMBAERT, S., NEMERY, I., ROEKENS, B., CARRETERO, J. C., KIMMEL, T. & GHOSEZ, L. (1986). Tetrahedron Lett. 27, 5099-5102.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, pp. 175-189. Oxford Univ. Press.

Acta Cryst. (1992). C48, 404-406

N-{2-[(1-Cyanocyclohexyl)(*tert*-butyldimethylsilyloxy)amino]propionyl}-2,5-bis(methoxymethyl)pyrrolidine and N-(2-Anilinopropionyl)-2,5-bis(methoxymethyl)pyrrolidine

BY B. TINANT AND J.-P. DECLERCQ

Laboratoire de chimie physique et de cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

AND P. HENDERSON

Laboratoire de chimie organique de synthèse, Unversité Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 4 July 1991; accepted 2 August 1991)

Abstract. (1): $C_{24}H_{45}N_3O_4Si$, $M_r = 467.73$, monoclinic, $P2_1/c$, a = 12.947 (3), b = 13.814 (4), c =16.186 (5) Å, $\beta = 108.61$ (3)°, V = 2744 (1) Å³, Z =4, $D_x = 1.13 \text{ g cm}^{-3}$, Cu K α , $\lambda = 1.5418 \text{ Å}$, $\mu =$ 9.90 cm^{-1} , F(000) = 1024, T = 291 K, R = 0.058 for4276 observed reflections. (2): $C_{17}H_{26}N_2O_3$, $M_r =$ 306.41, monoclinic, $P2_1/c$, a = 9.579(2), b =9.601 (1), c = 18.826 (2) Å, $\beta = 103.25$ (2)°, V =1685.3 (4) Å³, Z = 4, $D_x = 1.21$ g cm⁻³, Mo K α , $\lambda =$ $0.71069 \text{ Å}, \mu = 0.89 \text{ cm}^{-1}, F(000) = 664, T = 291 \text{ K},$ R = 0.042 for 2361 observed reflections. The relative configuration of the propionyl asymmetric carbon is inverse with respect to that of the pyrrolidine ring carbon atoms (i.e. one is R and the other S). The conformation of the pyrrolidine is different in the two compounds: in (1), it is an envelope with torsion angles of 23.0 (6), -36.0 (6), 36.5 (6), -22.2 (6) and $0.0(6)^{\circ}$; in (2), it adopts a half-chair conformation with the twofold axis through N, the endocyclic torsion angles being 8.8(5), -27.7(5), 36.5(5), -30.3(5) and $13.4(5)^{\circ}$. In (2), an intermolecular hydrogen bond between the N-H and the carbonyl O is observed: N-H···O, N···O = 3.098 (3), H···O = 2.24 (2) Å, N—H···O = 175 (1)° (O: 1 - x, -y, 1-z).

Experimental. Crystals were obtained by evaporation from pentane-methanol, 1:1, for (1) and from hexane for (2). D_m not measured. Lattice parameters refined using 20 reflections in the range $5 \le 2\theta \le 50^{\circ}$ for (1) and 30 reflections in the range $5 \le 2\theta \le 25^{\circ}$ for (2). Huber four-circle diffractometer, mono-chromatized Cu $K\alpha$ for (1), Mo $K\alpha$ radiation for (2).

0108-2701/92/020404-03\$03.00

© 1992 International Union of Crystallography

404

Table 1. Data collection and refinement parameters

Table 3. Selected bond distances (Å) and angles (°) for
compounds (1) and (2)

	rystal size (mm)	Compound	1) Compound (2)		compounds (1) and (2)			
Approx. cr		0.28 × 0.25 >	0.20 0.36 × 0.32 ×	0.32 × 0.20		(I)		(2)
Collection	range $(\sin\theta/\lambda)_{max}$ (Å ⁻¹)	0.60	0.59	- 12	C2N1	1.500 (3)		1.446 (3)
Range of <i>n</i>	ĸı	$-15 \le h \le 15$ $0 \le k \le 16$	$0 \le n$ $0 \le k$	≤ 12 ≤ 12	010-N1	1.460 (2)	C10—N1	1.373 (3)
		$0 \le l \le 19$	- 22 ≤ <i>l</i>	≤ 22	C18—N1 C3—C2	1.488 (2)		1.542 (3)
Scans	tondard reflection	ω 533	θ- Τ	-20 18	C26C2	1.521 (3)	C16-C2	1.526 (3)
No. of mea	isured reflections	5409	38	81	04C3	1.229 (2)		1.233 (2)
No. of obs	erved reflections $[l > 2.5]$	<i>σ</i> (<i>I</i>)] 4276	23	61 79	C6—N5	1.475 (3)		1.486 (2)
No. of para	ameters	0.058	0.042	/8	C9N5	1.480 (3)		1.479 (2)
wR		0.060	0.042		C7	1.523 (3)		1.529 (3)
$w = 1/(\sigma^2 + s)$	$+gF^2$), $g=$	0.00017	0.66		C9—C8	1.528 (3)		1.535 (3)
(Δ/σ)		0.48	0.04		Si11O10 C24C18	1.667 (1) 1.494 (3)		
<i>∆</i> ρ(max., π	nin.) (e Å ^{- 3})	0.37, -0.39	0.19,	-0.14	N25-C24	1.126 (3)		
						(1)		(2)
					O10-N1-C2	104.0 (1)	C10-N1-C2	124.2 (2)
				_	C18-N1-C2	119.0 (2)		
Table 2. Atomic coordinates $(\times 10^4)$ and equivalent					C3-C2-NI	111.6 (2)		111.7 (2)
isotropic temperature factors ($Å^2 \times 10^3$)				C26-C2-N1	116.7 (2)	C16-C2-N1	107.1 (2)	
		a) 5 5 11 + +			04C3C2	110.8 (2)	010-02-03	119.6 (2)
	$U_{\rm eq} = (1)$	$(3) \geq_i \geq_j U_{ij} a_i^* a_j^* \mathbf{a}_i$.a _j .		N5-C3-C2	118.9 (2)		119.1 (2)
	x	у	Z	U_{eq}	N5-C3-O4 C6-N5-C3	121.4 (2) 127.7 (2)		121.3 (2) 119.4 (2)
Compour	nd (1)				C9-N5-C3	120.2 (2)		128.1 (2)
NI C2	7558 (1)	2511 (1)	5468 (1)	42 (1) 44 (1)	C9-N5-C6	111.5 (2)		112.3 (2)
C2 C3	6436 (2)	4003 (2)	5456 (1)	45 (1)	C7-C0-N3 C8-C7-C6	103.4 (2)		104.9 (2)
04	6305 (1)	4475 (1)	6060 (1)	59 (1)	C9C8C7	104.5 (2)		104.0 (2)
N5 C6	6520 (1) 6412 (2)	3992 (2)	3885 (1)	50 (1)	C8C9N5 SillO10N1	104.0 (2)	C11-C10-N1	119.6 (2)
C7	6883 (2)	4770 (2)	3441 (2)	61 (1)		.,	C15-C10-NI	123.2 (2)
C8	6518 (2) 6582 (2)	5712 (2)	3754 (2) 4697 (2)	64 (1) 55 (1)				
010	7397 (1)	1465 (1)	5379 (1)	47 (1)		e9 Î		e lan
Sil1	7210 (1)	895 (1)	4435 (1)	50 (1) 77 (1)	2	C30 C32	d	1C30 C32
C12 C13	8203 (3)	1266 (3)	3886 (2)	86 (1)	Ca,	100 0031°	CS	
C14	7379 (2)	- 397 (2)	4817 (2)	64 (1) 124 (1)	c2784	N5	c274	
C15 C16	7102 (4)	- 1072 (2)	4025 (2)	1124 (1)	C290-C C3	5° _ 1020 _ 1021	C290 C3	6 20 lc21
C17	6605 (4)	- 622 (3)	5313 (3)	130 (2)	028		028	
C18 C19	8549 (2) 8714 (2)	2612 (2) 3661 (2)	6562 (2)	46 (1) 53 (1)	2726	N1 18 C13	C2E42]	
C20	9807 (2)	3824 (2)	7279 (2)	68 (1)	SIL	C24	J.	
C21 C22	10759 (2)	3515 (3) 2463 (3)	6977 (2) 6689 (2)	83 (1) 85 (1)	C.	14 N25	-	C14 N25
C22 C23	9535 (2)	2291 (2)	5973 (2)	64 (1)	~	10161015	مــــــــــــــــــــــــــــــــــــ	N ICIGICIS
C24	8503 (2)	1973 (2)	6976 (2) 7546 (2)	6l (1) 96 (1)	C17	lovelove	(1)	
C26	6128 (2)	2524 (2)	6264 (2)	58 (1)	1	Fig. 1. Stereoscop	ic view of molecu	le (1).
C27	5226 (2)	3820 (2)	3337 (2)	54 (1)				
C28	3627 (2)	2963 (2)	3215 (2)	72 (1)		٩		ß
C30	7619 (2)	5905 (2)	5347 (2)	64 (1)		021		021 C22
C32	8537 (2) 9511 (3)	6032 (3)	5686 (2)	92 (1)	~	LCB 2/C20	24	CC8 2C20
-		. ,			C6	Jacobie Contraction	C6	, Xa ~
Compour	nd (2)	2151 (2)	5003 (1)	45 (1)		× .	018	N5 CT I
C2	4289 (2)	2068 (2)	4271 (1)	38 (1)	C17	C3 C16	~ (c17	
C3	2814 (2)	1419 (2)	4265 (1)	36 (1)	Jc19 (le i s	
04 N5	2746 (2)	2031 (2)	3864 (1)	34 (1)	c		م	
C6	189 (2)	1443 (2)	3879 (1)	40 (1)	C14	P C10	C14	C 10
C7 C8	-812(2) -89(2)	2163 (3) 3543 (3)	3234 (1)	48 (1)	C13		C13	L A
C9	1517 (2)	3191 (2)	3338 (1)	37 (1)	6	1012	ď	VC12
C10 C11	4919 (2) 5843 (2)	3023 (2) 3007 (3)	6232 (1)	41 (1) 52 (1)		۶		8
C12	5634 (3)	3894 (3)	6771 (2)	61 (1)]	Fig. 2. Stereoscop	bic view of molecu	ıle (2).
C13	4506 (3)	4826 (3) 4860 (3)	6648 (2) 5969 (1)	61 (1) 54 (1)				
C15	3786 (2)	3978 (3)	5415 (1)	46 (1)	One stand	ard reflection	checked every	50 reflections
C16	5070 (3)	1142 (3)	3830 (1)	52 (1)	no signifi	and reflection	Roth struct	ures solved by
018	-360(2)	3132 (2)	4719 (1)	52 (1)	no significant deviation. Both structures solved by			
C19	- 782 (4)	3402 (4)	5373 (2)	67 (1)	SHELXS	so (Sneidrick,	1985). FOT (1),	an ri atoms m
C20 021	2023 (3)	2725 (3) 3814 (2)	2008 (1) 2152 (1)	4/(1) 53(1)	idealized	positions (C	-H = 1.08 A,	H - C - H =
C22	2555 (3)	3625 (3)	1608 (1)	55 (1)	109.5°). Fe	or (2), all H a	toms from dif	terence Fourier

synthesis. Anisotropic least-squares refinement (SHELX76, Sheldrick, 1976) using F; H isotropic with common refined temperature factor. Atomic scattering factors from *International Tables for X-ray Crystallography* (1974, Vol. IV).

Experimental details are summarized in Table 1. The atomic parameters are given in Table 2.* Selected bond lengths and bond angles are listed in Table 3. Figs. 1 and 2 are stereoscopic views of the molecules, showing the numbering of the atoms (*PLUTO*, Motherwell & Clegg, 1978).

Related literature. We have currently developed an asymmetric version of the electrophilic amination of

silylketene acetals (Sasaki, Ishibashi & Ohno, 1983; Henderson, 1991). During the course of this investigation we were able to isolate compounds (1) and (2), the latter being obtained after reductive cleaving of the N—O bond of the phenyl analogue of (1). The configuration at the new asymmetric carbon (C2), as established by this study, provides useful information which should allow a model for asymmetric induction in these transformations to be proposed.

References

HENDERSON, PH. (1991). PhD thesis, Univ. of Louvain, Belgium.

- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SASAKI, T., ISHIBASHI, Y. & OHNO, M. (1983). Chem. Lett. pp. 863-866.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, pp. 175-189. Oxford Univ. Press.

REGULAR STRUCTURAL PAPERS

Acta Cryst. (1992). C48, 406-408

Dibromobis(ethyldiphenylphosphine)nickel(II)

JAN-OLLE MALM, VIVEKA ALFREDSSON, GÖRAN SVENSSON* AND JÖRGEN ALBERTSSON†

Inorganic Chemistry 2, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden

(Received 12 February 1991; accepted 24 September 1991)

Abstract

The asymmetric unit comprises two mononuclear complexes, one with a twofold and the other with a pseudo twofold axis passing through Ni. The coordination around Ni is tetrahedral with Ni—Br = 2.339 (2)-2.362 (2) Å and Ni—P = 2.306 (3)–2.316 (3) Å. The angles Br—Ni—Br = 122.7 (1) and $114.86 (7)^{\circ}$ are greater and the angles P—Ni—P = 102.9 (2) and $98.7 (1)^{\circ}$ smaller than the tetrahedral

† Present address: Department of Inorganic Chemistry, Chalmers University of Technology, S-412 96, Göteborg, Sweden.

0108-2701/92/020406-03\$03.00

angle. The two ethyl groups are pointing in opposite directions in both complexes. The crystal is built up from discrete complexes stabilized by van der Waals interactions.

Comment

The title compound was prepared as described by Hayter & Humiec (1965). Square planar-tetrahedral isomerism for complexes of Ni^{II} was first observed for the title compound (Hayter & Humiec, 1962). Since then several other cases of this isomerism have been found for complexes of the type $[NiX_2(PR_3)_2]$. Tetrahedral coordination is favored in the sequences X = I > Br > Cl and $PPh_3 > PR_2Ph > PR_3$ (Tolman, 1977). Crystal structure determinations of tetrahedral complexes in the solid state have been reported for NiCl₂(PPh₃)₂ (Garton, Henn, Powell & Venanzi, 1963) and NiBr₂(PPh₃)₂ (Jarvis, Mais & Owston, 1968). Square-planar complexes have, e.g., been reported for NiBr₂(PMe₃)₂ (Mari, Gleizes, Dartiguenave & Dartiguenave, 1981), NiCl₂- $[P(C_6H_{11})_3]_2$ (Bellon, Albano, Bianco, Pompa & Scatturin, 1963) and trans-dibromobis(5-methyl-5Hdibenzophosphole)nickel(II) (Watkin, 1976). In NiBr₂[PPh₂(CH₂Ph)]₂ (Kilbourn & Powell, 1970) the unit cell contains both isomers.

© 1992 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters, a complete list of bond lengths and angles, and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54598 (44 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA0075]